

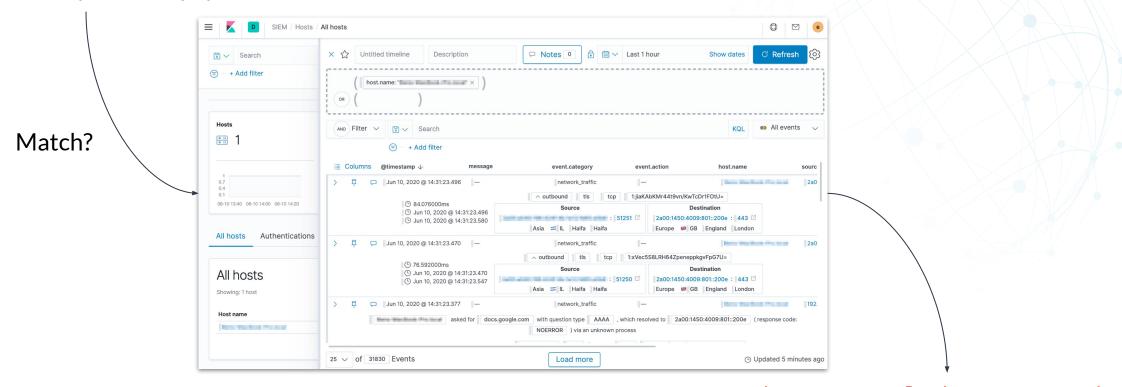
# Enhancing CTI Processes with Code Search Technology

Carlos Rubio & Jonas Wagner





# Agenda


- Search in cyber security
- Searchable binary code
- Using code search for malware identification
- Making OSINT searchable
- Key Takeaways

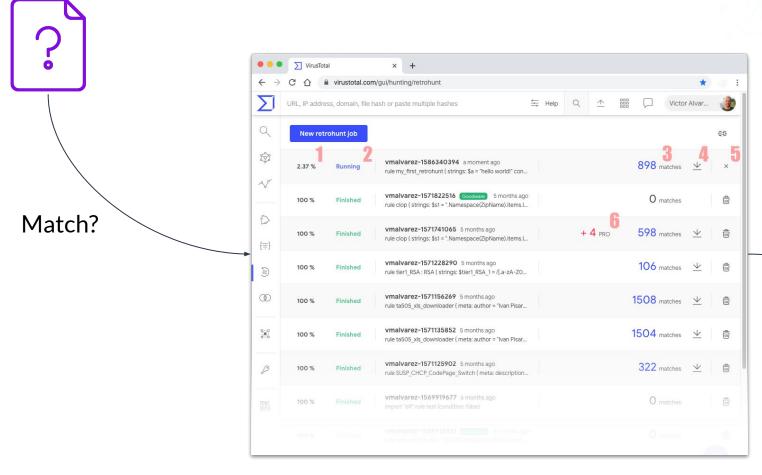




Search is used in many areas of cyber security...

#### https://\*/api???17.php



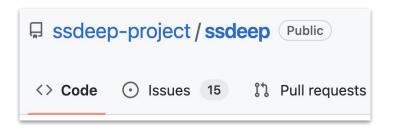

https://evil.ch/apiput17.php

https://evil.ch/apiget17.php



# Searching for binary code...

#### New malware



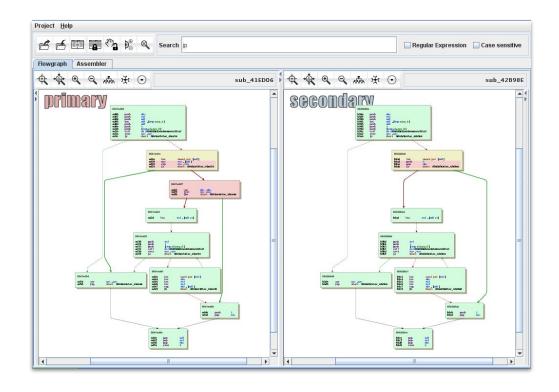




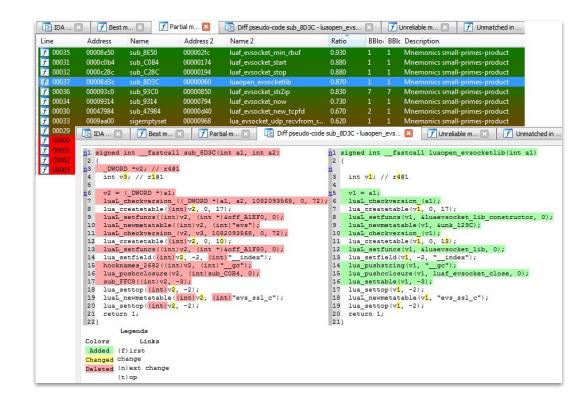



# Binary code similarity



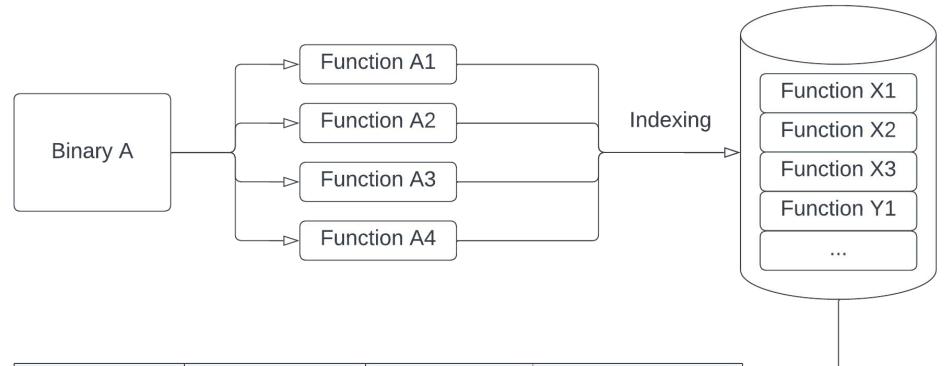

Broad representation of a file, includes (meta-)data, strings and code.

55 31 D2 89 E5 8B 45 08 56 ... 55 31 D2 89 E5 88 4C 13 01 ...


Brittle to compiler differences, code mutations, new variants.

#### Binary code similarity

#### **BinDiff**




#### Diaphora

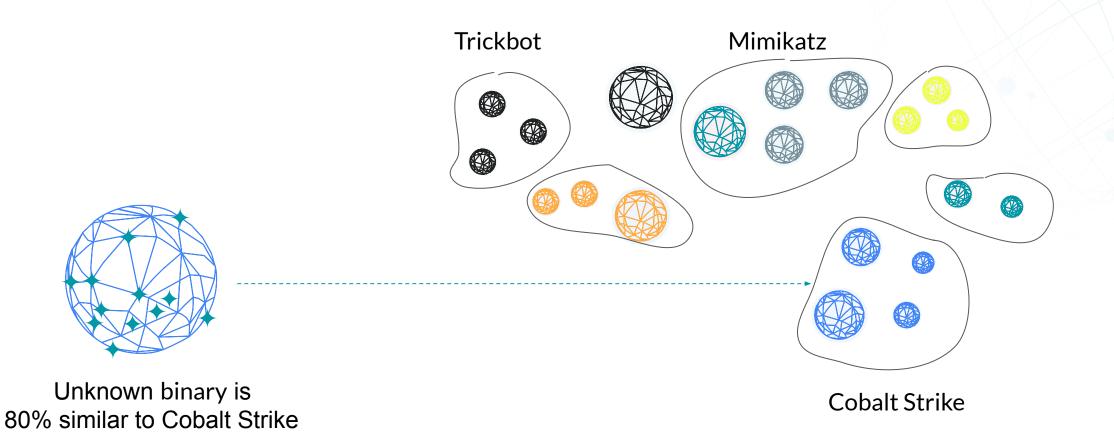




# Binary code search engine



| Name     | Hash      | Similarity | Function<br>Matches |
|----------|-----------|------------|---------------------|
| Binary B | 2C204908  | 82%        | 290 / 350           |
| Binary X | 9340c8fae | 61%        | 215 / 350           |
| Binary Y | 73c59aa0  | 55%        | 192 / 350           |
|          |           |            |                     |




Using code search for malware identification




#### Malware identification

Malware identification: Determine malware family for a piece of unknown malware.





#### Malware identification





06422a403ee38c1d299f9f609f2d071655a4f216b8bc5d7e17bbcd0eb1726855 **a** +2

incident-IR-2022-17.dll | DLL (PE, x86-32) | 220 KB

Threats: VSingle

File first seen Analysis created

Label

2022-04-14 16:16:04 2022-06-27 23:53:37





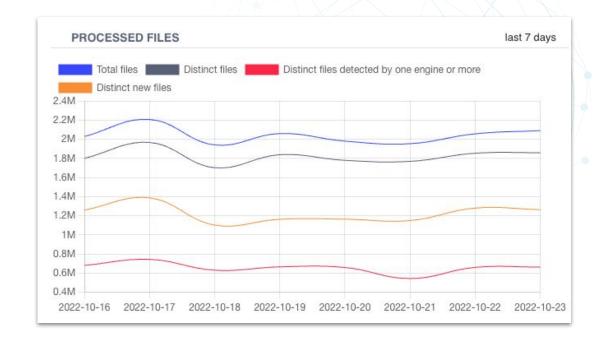


Environment Static analysis

Analysis ID 6a24f22d-220e-4a5c-8870-2b16eb427fd4

IR-2022-17

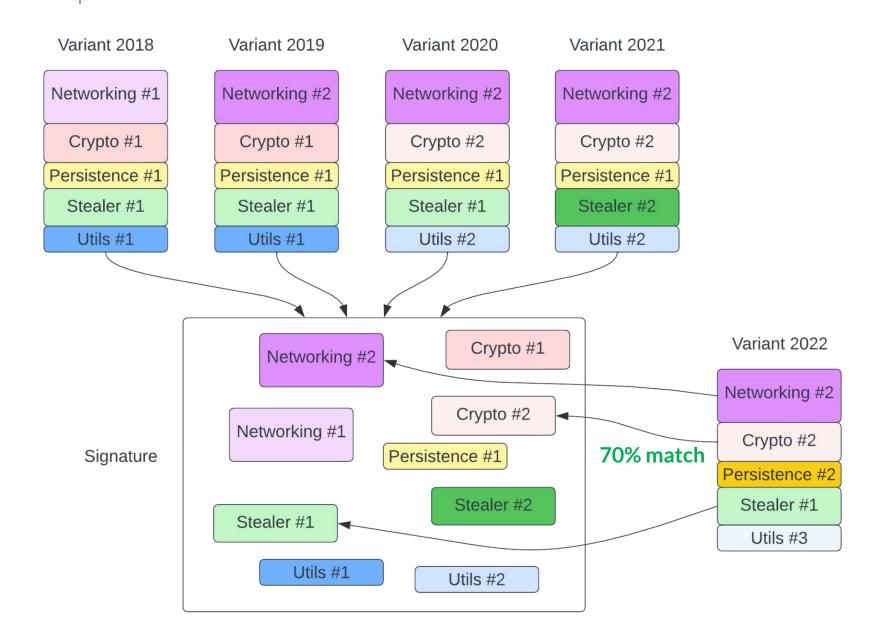
**VSingle** 


Threats

56 / 70 functions



## Resilient identification against malware variants


- Almost all "new" malware is a variation of previous versions.
- Variations happen because:
  - bypass detections (explicit)
  - malware evolution (implicit)



- There is of course completely new malware, but that is rare.
- What we need is a solid signature that is resilient to variations.



#### Code search for malware identification









# Mimikatz project

```
mimikatz 2.0 alpha (x86) release "Kiwi en C" (Apr 6 2014 22:02:03)
  .#####.
 .## ^ ##.
 ## / \ ## /* * *
 ## \ / ## Benjamin DELPY `gentilkiwi` ( benjamin@gentilkiwi.com )
            https://blog.gentilkiwi.com/mimikatz
 '## V ##'
                                            with 13 modules * * */
  '#####
mimikatz # privilege::debug
Privilege '20' OK
mimikatz # sekurlsa::logonpasswords
Authentication Id: 0; 515764 (00000000:0007deb4)
                : Interactive from 2
Session
User Name
                : Gentil Kiwi
Domain
                : vm-w7-ult-x
SID
                 : S-1-5-21-1982681256-1210654043-1600862990-10
       msv :
        [00000003] Primary
        * Username : Gentil Kiwi
        * Domain : vm-w7-ult-x
        * LM
              : d0e9aee149655a6075e4540af1f22d3b
        * NTLM
                : cc36cf7a8514893efccd332446158b1a
        * SHA1
                  : a299912f3dc7cf0023aef8e4361abfc03e9a8c30
       tspkg:
        * Username : Gentil Kiwi
        * Domain : vm-w7-ult-x
        * Password : waza1234/
```



Source: https://github.com/gentilkiwi/mimikatz



## Bypassing Windows Defender & Yara rules

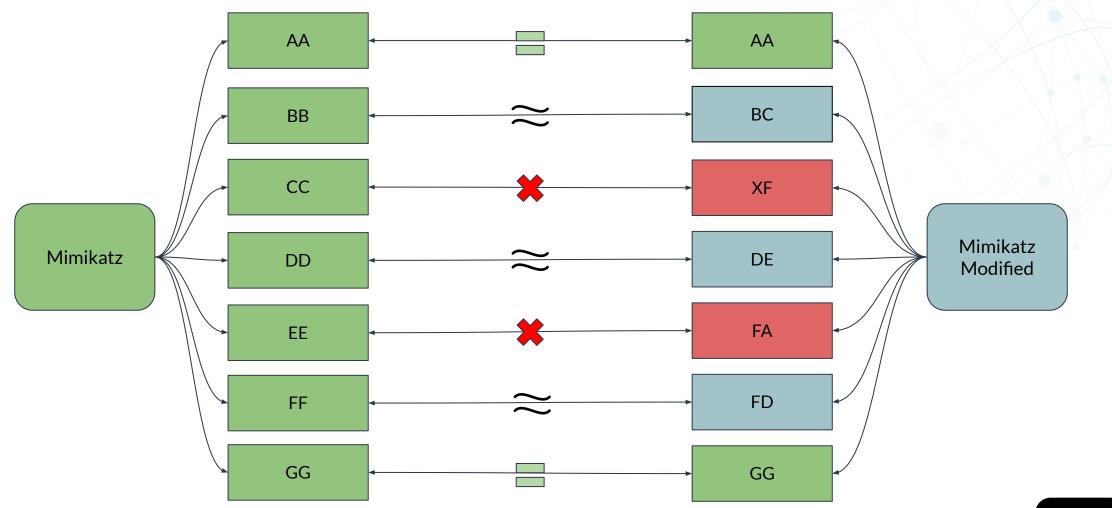
# **Windows** Defender

```
λ DefenderCheck.exe C:\Users\ROBOT\Desktop\Binaries\mimikatz.exe
Target file size: 1466368 bytes
Analyzing...
[!] Identified end of bad bytes at offset 0x110E9B in the original file
File matched signature: "HackTool:Win64/Mikatz!dha"
           00 5F 00 64 00 6F 00 4C 00 6F 00 63 00 61 00 6C
                                                              · ·d·o·L·o·c·a·l
           00 20 00 3B 00 20 00 22 00 25 00 73 00 22 00 20
                                                             . .:. .".%.5.".
           00 6D 00 6F 00 64 00 75 00 6C 00 65 00 20 00 6E
                                                             ·m·o·d·u·l·e· ·n
                                                              ·o·t· ·f·o·u·n·d
           00 6F 00 74 00 20 00 66 00 6F 00 75 00 6E 00 64
           00 20 00 21 00 0A 00 00 00 00 00 00 0A 00 25
           00 31 00 36 00 73 00 00 00 00 00 00 00 20 00 20
                                                             .1.6.5.....
                                                              .-. . .%.5... .
           00 2D 00 20 00 20 00 25 00 73 00 00 00 20 00 20
00000070
           00 5B 00 25 00 73 00 5D 00 00 00 00 00 00 00 00
                                                             .[.%.5.].....
08000006
           00 00 00 00 00 45 00 52 00 52 00 4F 00 52 00 20
                                                             -----E-R-R-O-R-
           00 6D 00 69 00 6D 00 69 00 6B 00 61 00 74 00 7A
                                                             ·m·i·m·i·k·a·t·z
           00 5F 00 64 00 6F 00 4C 00 6F 00 63 00 61 00 6C
                                                              · ·d·o·L·o·c·a·l
           00 20 00 3B 00 20 00 22 00 25 00 73 00 22 00 20
                                                             . .;. .".%.5.".
           00 63 00 6F 00 6D 00 6D 00 61 00 6E 00 64 00 20
                                                             ·c·o·m·m·a·n·d·
           00 6F 00 66 00 20 00 22 00 25 00 73 00 22 00 20
                                                             .o.f. .".%.s.".
           00 6D 00 6F 00 64 00 75 00 6C 00 65 00 20 00 6E
                                                             ·m·o·d·u·l·e· ·n
          00 6F 00 74 00 20 00 66 00 6F 00 75 00 6E 00 64
                                                             ·o·t· ·f·o·u·n·d
```

Source: https://github.com/matterpreter/DefenderCheck



- INDICATOR TOOL PWS Mimikatz (DitekSHen)
- Mimikatz\_Gen\_Strings (Author: Florian Roth)
- Mimikatz\_Strings (Author: Florian Roth)
- win\_mimikatz\_w0 (Author: Benjamin DELPY (gentilkiwi))
- mimikatz (Author: Benjamin DELPY (gentilkiwi))

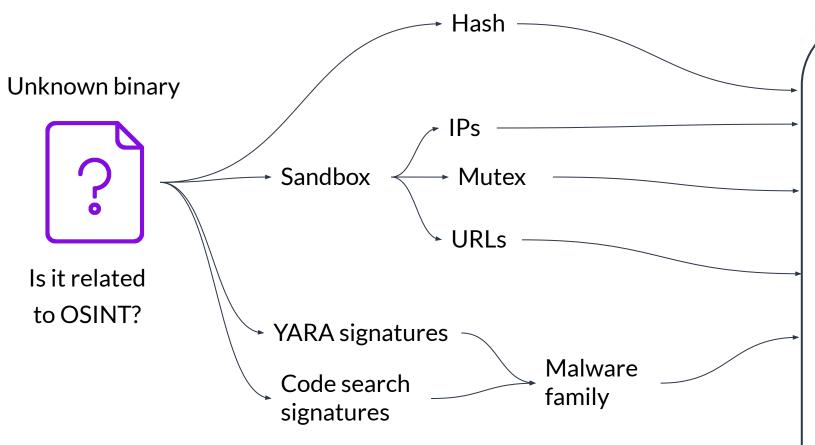

```
[DEBUG] Replacing instruction at 0x1400ela21 (mov rsi, rdx) with: push rdx; pop rsi; nop ...
[DEBUG] Replacing instruction at 0x1400elaba (test ebx, ebx) with: or ebx, ebx ...
[DEBUG] Replacing instruction at 0x1400eldfc (mov rbp, rsp) with: push rsp; pop rbp; nop ...
[DEBUG] Replacing instruction at 0x1400ele03 (mov rbx, rdx) with: nop; push rdx; pop rbx ...
[DEBUG] Replacing instruction at 0x1400elefd (mov rdx, rax) with: nop; push rax; pop rdx ...
[DEBUG] Replacing instruction at 0x1400d4476 (test rdx, rdx) with: or rdx, rdx ...
[DEBUG] Replacing instruction at 0x1400e19a8 (mov rax, rsp) with: nop; push rsp; pop rax ...
[DEBUG] Replacing instruction at 0x1400e19f6 (test eax, eax) with: or eax, eax ...
[DEBUG] Replacing instruction at 0x1400elacc (mov rax, rsp) with: push rsp; nop; pop rax ...
[DEBUG] Replacing instruction at 0x1400e1b34 (test eax, eax) with: or eax, eax ...
[DEBUG] Replacing instruction at 0x1400e1b81 (test edi, edi) with: or edi, edi ...
[DEBUG] Replacing instruction at 0x1400e22ca (xor eax, eax) with: sub eax, eax ...
[DEBUG] Replacing instruction at 0x1400e2204 (xor r9d, r9d) with: sub r9d, r9d ...
[DEBUG] Replacing instruction at 0x1400e2241 (xor eax, eax) with: sub eax, eax ...
[DEBUG] Replacing instruction at 0x1400e22f5 (mov rbx, rdx) with: nop; push rdx; pop rbx ...
[DEBUG] Replacing instruction at 0x1400d42e0 (mov rsi, rdx) with: push rdx; nop; pop rsi ...
[DEBUG] Replacing instruction at 0x1400d42ea (xor r9d, r9d) with: sub r9d, r9d ...,
[DEBUG] Replacing instruction at 0x1400d42f0 (test rax, rax) with: or rax, rax ...
[DEBUG] Replacing instruction at 0x1400d42fc (mov rax, rcx) with: push rcx; nop; pop rax ...
[DEBUG] Replacing instruction at 0x1400d431b (test rax, rax) with: or rax, rax ...
[DEBUG] Replacing instruction at 0x1400d4d7c (xor eax, eax) with: sub eax, eax ...
[INFO] Opening file with r2
[INFO] Patching binary
```



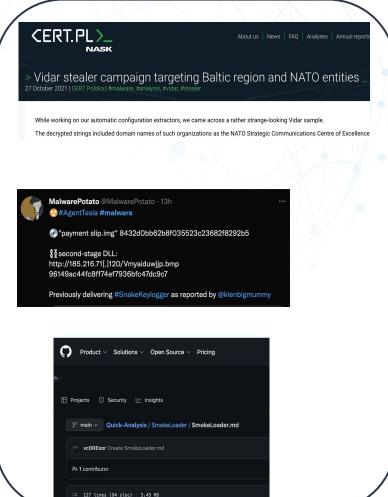
# Resilience through code search technology

#### 5/7 are similar or equal



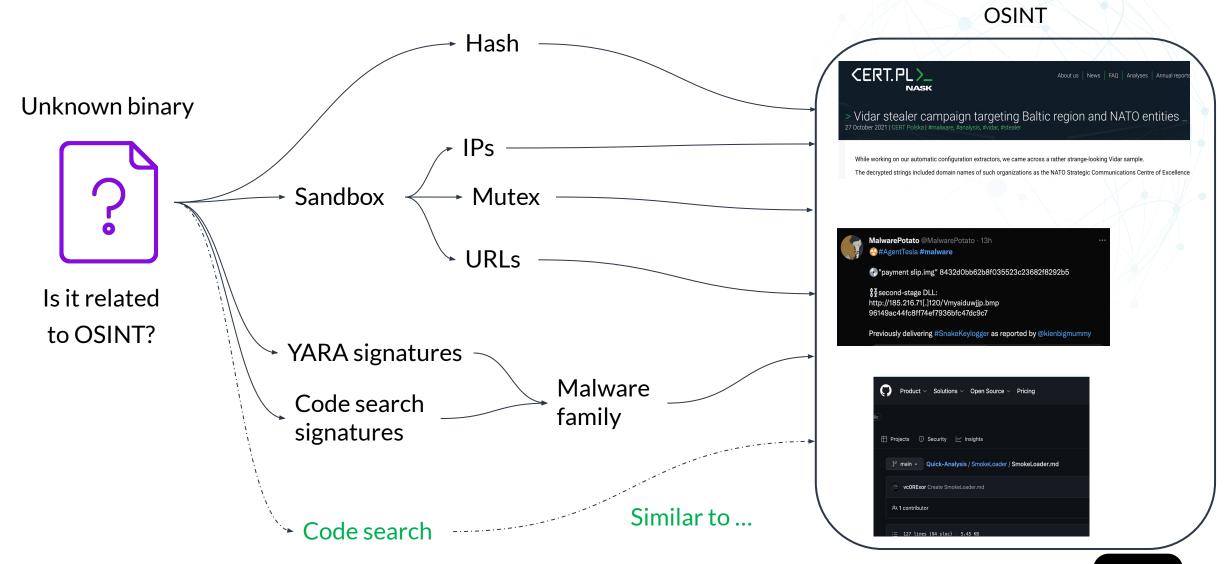







# How to relate an unknown binary file to OSINT?




#### **OSINT**





# How to relate an unknown binary file to OSINT?





# Unknown binary OSINT search



# Unknown binary OSINT search



#### OSINT analysis

Found 7 similar samples from 9 OSINT sources.

= Filter table

☑ Show all OSINT samples

**⊥** Export as CSV

| 964477bebf   |                                        | 6b8c777ab88d350de74d 🖺             |                                                           | 51%                                                       |
|--------------|----------------------------------------|------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|
| 964477bebf   | s Turnell week was allowed as well - o |                                    |                                                           |                                                           |
|              | ea52df903b370d8e4009                   | 6b8c777ab88d350de74d               |                                                           | 51%                                                       |
| 964477bebf   | ea52df903b370d8e4009                   | 6b8c777ab88d350de74d               |                                                           | 51%                                                       |
| 964477bebf 🔓 | ea52df903b370d8e4009 <b>•</b>          | 6b8c777ab88d350de74d 🖺             |                                                           | 51%                                                       |
| 964477bebf 🖺 | ea52df903b370d8e4009                   | 6b8c777ab88d350de74d               |                                                           | 51%                                                       |
| )            | 64477bebf                              | 64477bebf • ea52df903b370d8e4009 • | 64477bebf • ea52df903b370d8e4009 • 6b8c777ab88d350de74d • | 64477bebf • ea52df903b370d8e4009 • 6b8c777ab88d350de74d • |



#### VSingle JPCERT report





#### JPCERT/CC Eyes

Top > List of "Malware" > VSingle malware that obtains C2 server information from GitHub



July 5, 2022

# VSingle malware that obtains C2 server information from GitHub

Lazarus



Some types of malware use DGA, obfuscate destination information, or contain fake C2 server information in order to hide the original C2 server. Others obtain C2 server information from legitimate servers. Recently, the malware used by Lazarus VSingle has been updated to retrieve C2 servers information from GitHub. This article focuses on the updates of VSingle. VSingle has two versions, one targeting Windows OS and the other targeting Linux OS, and this article is based on the latter, which has more updates.

#### Communication Method

The current version of VSingle uses wget command to communicate with the C2 server while the previous versions used system call. Figure 3 shows a part of the code that executes the wget command. (Vsingle on Windows OS does not include this update and uses Windows API, not wget command.)

Figure 3: A part of the code to execute the wget command

#### Access Patterns to GitHub

The GitHub repository from which the communication is obtained is not fixed but dynamically generated. The following is the pattern of URLs to be accessed.

https://raw.githubusercontent.com/%s/%s/master/README.de

The user name and repository name are the string randomly selected from the following list + a random string added.

Table 1: String used for username and repository names

| Username | Repository name |
|----------|-----------------|
| gar3ia   | Arcan3          |
| wo0d     | Wr0te           |
| tr3e     | after           |
| ucky     | luxuryboy       |
| 0ve      | pnpgather       |
| /0siej   | happyv1m        |
| e0vvsje  | laz3rpik        |
| polaris  | d0ta            |
| grav1ty  | Dronek          |
| v1inter  | Panda3          |
| summer   | cpsponso        |
|          | ggo0dlluck      |



# VSingle JPCERT report

#### Appendix A: GitHub repository used by the attacker

- https://github.com/bgrav1ty13j/bPanda3
- https://github.com/fwo0d17n/fWr0te
- https://github.com/glucky18p/gluxuryboy
- https://github.com/gf00t18p/gpick/
- https://github.com/jv0siej21g/jlaz3rpik

#### Appendix B: C2 Server

- https://mantis.westlinks.net/api/soap/mc\_enum.php
- https://www.shipshorejob.com/ckeditor/samples/samples.php
- http://crm.vncgroup.com/cats/scripts/sphinxview.php
- https://ougreen.com/zone
- https://tecnojournals.com/general
- · https://semiconductboard.com/xcror
- · https://bluedragon.com/login
- · https://tecnojournals.com/prest

#### Appendix C: Malware hash value

- 199ba618efc6af9280c5abd86c09cdf2d475c09c8c7ffc393a35c3d70277aed1
- 2eb16dbc1097a590f07787ab285a013f5fe235287cb4fb948d4f9cce9efa5dbc
- 414ed95d14964477bebf86dced0306714c497cde14dede67b0c1425ce451d3d7





## VSingle Symantec report





POSTED: 27 APR, 2022 | 5 MIN READ | THREAT INTELLIGENCE



#### Stonefly: North Korea-linked Spying Operation Continues to Hit Highvalue Targets

Espionage group focuses on obtaining classified or sensitive intellectual property that has civilian and military applications.

The North Korean-linked Stonefly group is continuing to mount espionage attacks against highly specialized engineering companies with a likely goal of obtaining sensitive intellectual property.

Stonefly specializes in mounting highly selective targeted attacks against targets that could yield intelligence to assist strategically important sectors such as energy, aerospace, and military equipment. Virtually all of the technologies it appears to be interested in have military as well as civilian uses and some could have applications in the development of advanced weaponry.

#### History of ambitious attacks

Stonefly (aka DarkSeoul, BlackMine, Operation Troy, and Silent Chollima) first came to notice in July 2009, when it mounted distributed denial-of-service (DDoS) attacks against a number of South Korean, U.S. government, and financial websites.

It reappeared again in 2011, when it launched more DDoS attacks, but also revealed an espionage element to its attacks when it was found to be using a sophisticated backdoor Trojan (Backdoor.Prioxer) against selected targets.

In March 2013, the group was linked to the Jokra (Tojan.Jokra) disk-wiping attacks against a number of South Korean banks and broadcasters. Three months later, the group was involved in a string of DDoS attacks against South Korean government websites.

In recent years, the group's capabilities have grown markedly and, since at least 2019 Symantec has seen its focus shift solely to espionage operations against select, high-value targets. It now appears to specialize in targeting organizations that hold classified or highly sensitive information or intellectual property. Stonefly's operations appear to be part of a broader North Korean-sponsored campaign to acquire information and intellectual property, with Operation Dream Job, a more wider-ranging trawl across multiple sectors, being carried out by another North Korean group, Pompilus.

#### **Updated Preft backdoor**

The attackers used an updated version of Stonefly's custom Preft backdoor. Analysis of the backdoor revealed that it is a multistage tool:

Stage 1 is the main binary. A python script is used to unpack the binary and shellcode.

Stage 2 is shellcode. It performs the following actions:

- Sleeps for 19,999 seconds, probably in an attempt to evade sandbox detection
- Opens a mutex, with the name specified in the Stage 3 shellcode
- Instead of loading an executable file, it starts Internet Explorer (iexplore.exe) or explorer.exe and injects the Stage 3 shellcode into either. It sets up a named pipe ("\.\pipe\pipe") for communication. The file name of the main binary is sent over the pipe.

Stage 3 is more shellcode.

Stage 4 is the payload. It is an HTTP remote access tool (RAT) that supports various commands, including:

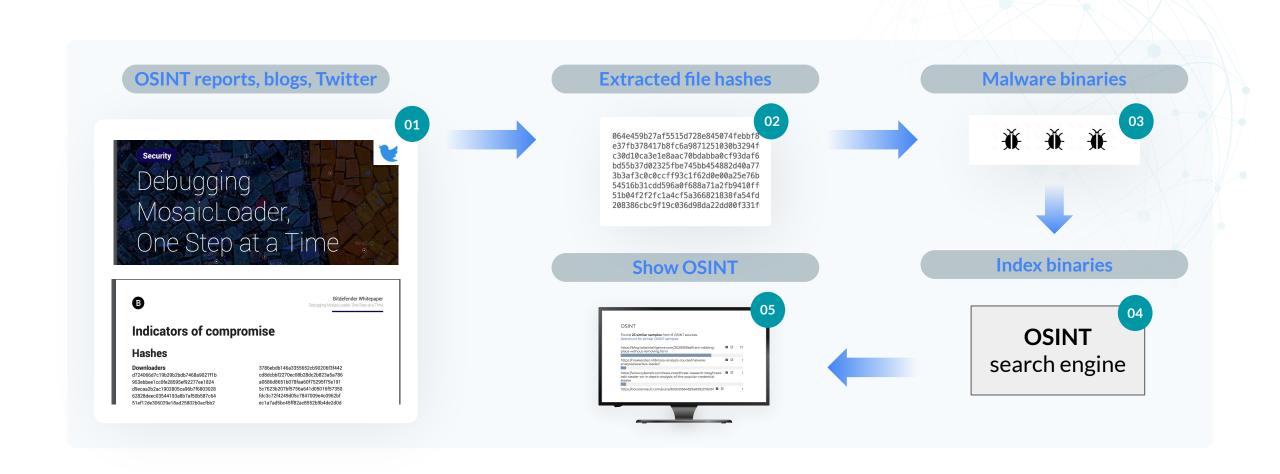
- 1. Download (Download a file and save locally)
- 2. Upload (Upload a file to a C&C server)
- 3. Set Interval (Change C&C server query interval in minutes)
- 4. Shell Execute (Execute a command in the shell)
- 5. Download Plugin
- 6. Update (Download a new version and replace)
- 7. Info (Return debug information about the current infection)
- 8. Uninstall
- 9. Download Executable

The malware can support four different kinds of plugins: executable files, VBS, BAT, and shellcode. It supports three different persistence modes: Startup\_LNK, Service, Registry, and Task Scheduler.



# VSingle Symantec report

#### **Indicators of Compromise**


If an IOC is malicious and the file is available to us, Symantec Endpoint products will detect and block that file.

| SHA256                                                            | Description                                  | File name(s)               |
|-------------------------------------------------------------------|----------------------------------------------|----------------------------|
| 3b779a84c17a3a2b588241676ec372c543b592473dae9d6b14db0d0d335522f34 | 3proxy tiny proxy server                     | svhost.exe                 |
| 7ab3f076e70350f06ad19863fdd9e794648020f621c0b1bd20ad4d80f0745142  | Backdoor.Preft                               | mf.exe,<br>mp_updt.exe     |
| 537dee22d8bc4867f45deddfa26c6d08a12c09e4fb5b539422e9b4d8fb0dff4a  | Backdoor.Preft                               | svchost.exe                |
| 586f30907c3849c363145bfdcdabe3e2e4688cbd5688ff968e984b201b474730  | Backdoor.Preft                               | svchost.exe                |
| 453014da94a1382f9f11535b3d90a44d67f43c02ffe8688465956a3ed7e71743  | Backdoor.Preft                               | svchost.exe                |
| d824eb45247f9b8e0266dc739425d80af4145062687d7e825e03adfac1b7e03b  | Backdoor.Preft                               | svchost.exe                |
| 414ed95d14964477bebf86dced0306714c497cde14dede67b0c1425ce451d3d7  | Backdoor.Preft                               | credit.exe,<br>credits.exe |
| 30cd61f13d64562a41eb5e8a3d30cd46d8678acd9eef4c73386c3ea4adb50101  | Infostealer                                  | mf.exe                     |
| 8637a4286d87a4fa3b6a102446f437058812be0d4ebb361ac8827ea4f186df23  | Infostealer                                  | mf.exe                     |
| 551653deddb8d9a78c1a239cc2da99ea403ce203c5843384c986149d4c17f26c  | Infostealer                                  | mf.exe                     |
| b3458b3d0bb80029de30f41ffc8e318176cca650d76b75549089b8a436e8862a  | Infostealer                                  | mp_updt.exe                |
| 9ca9f414b689fc903afb314016155814885966b0e30b21b642819d53ba94533c  | Invoke-TheHash                               | rev.ps1                    |
| 07b1b9d46a926084019c9e1a22ef724d7dd20fd85d144012dd4855ca66ad96fe  | Mimikatz                                     | pl.exe                     |
| 68d8f895135aab32f0b0f2520f1dd3ea791a0e0fec3e4e21d94040015bbbf096  | Mimikatz                                     | pl.exe                     |
| 5a73fdd0c4d0deea80fa13121503b477597761d82cf2cfb0e9d8df469357e3f8  | PuTTY PSCP                                   | pvhost.exe                 |
| 28d0e945f0648bed7b7b2a2139f2b9bf1901feec39ff4f6c0315fa58e054f44e  | Real VNC Bypass<br>Authentication<br>Scanner | vnc.exe, aa.exe            |
| 1a0e33a0e434e22e25a17b5d40fbef4fe900f075fcfa0dadd473010d03185e4a  | Runasuser privilege<br>escalation tool       | sepm.exe                   |

| b4a85ef01b5d8058cf94f3e96c48d86ce89b20295e8d1125dc3fc1c799a75789                                                                                                                                                         | Suspected proxy tool                                           | tapi.exe                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------|
| 0e20819e5584a31f00d242782c2071734d7e2377306e9ebd20dd435ce9c7d43a                                                                                                                                                         | Keylogger                                                      | avg.exe,<br>wkeylogger.exe          |
| 147187d4ca823187724205a7dbd6502a9409674e6602363d796218503c960e2f                                                                                                                                                         | Suspected SOCKS proxy tool                                     | svhost.exe                          |
| 5e62d4851596e3fb939525fa4437c553ab5c6b9d12920af7740a3473102ccd1a                                                                                                                                                         | Unknown file                                                   | protect.exe                         |
| 7399605f47be3d8ed021c9189b6b102461d5dd98a9d9082c71ff368e13cf8541                                                                                                                                                         | Unknown file                                                   | wax4315.tmp                         |
| cb6769bd80d5a234387bdaa907857ae478e2e693a157f29d97b8ce2db07856c1                                                                                                                                                         | Unknown file                                                   | N/A                                 |
| dda85ee1e0b4916ebd2eb7cbaeaa969843a19e7b8a9bb5d360a4bbc0bad91877                                                                                                                                                         | Unknown file                                                   | smssvc.exe                          |
| bfa7adeda4597b70bf74a9f2032df2f87e07f2dbb46e85cb7c091b83161d6b0a                                                                                                                                                         | WinRAR (old version)                                           | ra.exe                              |
| b7de7187f0f0281c17ae349b692f70892689ddf27b6b418142c809b41dfe3ce7                                                                                                                                                         | WinSCP                                                         | winscp.com                          |
| de00c0111a561e88d62fd84f425a6febc72e01e2e927fb76d01603319a34b4b3                                                                                                                                                         | WinSCP                                                         | winscp.exe                          |
|                                                                                                                                                                                                                          |                                                                |                                     |
| 14f0c4ce32821a7d25ea5e016ea26067d6615e33336c3baa854ea37a290a462a8                                                                                                                                                        | wmiexec.py                                                     | notepad.exe                         |
| 14f0c4ce32821a7d25ea5e016ea26067d6615e33336c3baa854ea37a290a462a8<br>tecnojournals[.]com                                                                                                                                 | wmiexec.py  Domain                                             | notepad.exe                         |
|                                                                                                                                                                                                                          |                                                                |                                     |
| tecnojournals[.]com                                                                                                                                                                                                      | Domain                                                         | N/A                                 |
| tecnojournals[.]com semiconductboard[.]com                                                                                                                                                                               | Domain<br>Domain                                               | N/A<br>N/A                          |
| tecnojournals[.]com semiconductboard[.]com cyancow[.]com                                                                                                                                                                 | Domain  Domain  Domain                                         | N/A<br>N/A<br>N/A                   |
| tecnojournals[.]com semiconductboard[.]com cyancow[.]com bluedragon[.]com                                                                                                                                                | Domain  Domain  Domain  Domain                                 | N/A<br>N/A<br>N/A<br>N/A            |
| tecnojournals[.]com semiconductboard[.]com cyancow[.]com bluedragon[.]com hxxps://tecnojournals[.]com/review                                                                                                             | Domain  Domain  Domain  Domain  Domain                         | N/A<br>N/A<br>N/A<br>N/A            |
| tecnojournals[.]com semiconductboard[.]com cyancow[.]com bluedragon[.]com hxxps://tecnojournals[.]com/review hxxps://tecnojournals[.]com/general                                                                         | Domain  Domain  Domain  Domain  Domain  Domain                 | N/A N/A N/A N/A N/A N/A             |
| tecnojournals[.]com semiconductboard[.]com cyancow[.]com bluedragon[.]com hxxps://tecnojournals[.]com/review hxxps://tecnojournals[.]com/general hxxps://semiconductboard[.]com/xml                                      | Domain  Domain  Domain  Domain  Domain  Domain  Domain         | N/A N/A N/A N/A N/A N/A N/A         |
| tecnojournals[.]com semiconductboard[.]com cyancow[.]com bluedragon[.]com hxxps://tecnojournals[.]com/review hxxps://tecnojournals[.]com/general hxxps://semiconductboard[.]com/xml hxxps://semiconductboard[.]com/xcror | Domain  Domain  Domain  Domain  Domain  Domain  Domain  Domain | N/A N/A N/A N/A N/A N/A N/A N/A N/A |



# OSINT indexing workflow



## Some real-world challenges

 Many malicious binaries are packed and the relevant code can only be found by statically or dynamically unpacking the binary files.

 Each binary contains library code. Need to avoid comparing library code with library code.

Get the actual binary referenced in the sources.



Key Takeaways



- The amount of variants and mutations it necessary to move towards resilient malware identification.
  - Code search technology can provide the next step in this direction.

- OSINT reports hold a lot of value but it's locked behind hashes.
  - By transforming binary code into a searchable IOC, we can unlock their potential.



# Thank you for your attention

carlos@threatray.com

jonas@threatray.com

